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Anomalous diffusion for continuum percolation is simulated by considering 
systems of randomly distributed circles and spheres. Universal behavior is 
obtained for the case of equal local conductances and nonuniversal behavior for 
diverging distributions of the local conductances. Diffusion in the continuum 
has a behavior consistent with that of other transport properties in the con- 
tinuum. In addition, the results suggest that different algorithms for diffusion, 
which differ only in the random walker sitting times, are equivalent. 
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1. I N T R O D U C T I O N  

Recently, there have been many Monte Carlo studies of diffusion in per- 
colating lattice networks. (1 5) It seems then of interest to try to describe the 
diffusion process on continuum networks and to find its critical behavior. 
The conspicuous features that specify the percolating continuum networks 
in comparison with lattice networks are the unfixed number of possible 
connecting bonds per site (or per object), the variation of the bond length, 
and the local variation in the bond direction. Since the "macroscopic" 
isotropy of the system ensures that the last feature will be unimportant in 
"macroscopic" samples, we have to consider the other two features. In par- 
ticular, we know that the local properties of the bond strength determine 
the critical behavior of the transport properties of the system. (6 11) On the 
other hand, the relatively wide distribution of the number of bonds per site 
(or per object), which is of particular importance in the diffusion process, 
has not been considered previously. 
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Following these considerations, we have simulated a diffusion process 
on systems of randomly placed circles and spheres and have determined the 
anomalous diffusion exponent k in the appropriate regimes. To check the 
effect of the above mentioned features, we had to modify previous lattice 
algorithms, (1'12'13) as will be discussed in Sections 2 and 3. Correspon- 
dingly, we started with a diffusion process on a system with a continuum 
geometry but fixed bond strength (Section 2), and then introduced the 
effect of bond strength variation (Section 3) into the system. The present 
results (Section 4) show that the statistical-structural differences between 
the lattice and the continuum are not manifested by a different universality 
class for the diffusion process. Furthermore, the variations in the local 
transport properties affect the diffusion process in the manner to be 
expected from the scaling theory of anomalous diffusion. Our results 
further indicate (Section 5) a general property of the diffusion process in a 
disordered system, i.e., that the critical behavior is dependent only on the 
relative "hopping" probability to adjacent sites and is independent of the 
"sitting time" on the site. 

2. D IFFUSION IN C O N T I N U U M  S Y S T E M S  

Diffusion in the continuum may differ from lattice diffusion as a result 
of the following inherent differences between putting objects in the con- 
tinuum and placing sites on a lattice: (1) the centers of the objects do not 
have discrete "addresses," but can lie anywhere within the continuum 
space; (2) the coordination number of a lattice represents the maximum 
number of nearest neighbors of any lattice site, while there is (in an infinite 
sample) no upper limit to the possible number of intersecting neighbors of 
a given object in the continuum. Our new algorithm is designed to account 
for these differences. For simplicity it is presented here in its two-dimen- 
sional form. The extension to higher dimensions is straightforward. 

We begin by randomly placing circles of fixed radius on a square of 
unit area (henceforth all lengths referred to will be in units of this square's 
edge). The x and y coordinates of a circle center are chosen by a random 
number generator, and each circle is numbered according to the order in 
which it is placed. As each circle is placed, we also determine whether its 
center lies within a central "window" (whose sides are of length 0.2) or 
whether its center lies within the boundary region at the edges of the unit 
square. A typical (though small) sample generated by the computer is 
shown in Fig. 1. 

In our computer program, each circle is checked for overlap with all 
previous circles. A matrix is built where the elements in row i give the 
circles that intersect circle i. Simultaneously, we use a variation of the 



Anomalous Diffusion and Continuum Percolation 371 

Fig. 1. A configuration of circles describing the samples on which the diffusion computations 
were carried out. The central window (inner square) is the region where a random walk 
begins, and the boundary region (outer square) is where a random walk ends. This picture 
shows 1000 circles, while the samples used for the computations were of about 10,000 circles 
(or spheres). 

Hoshen Kopelman algorithm (14~ to check for percolation (along one of the 
unit square axes). This procedure is continued until the percolation 
threshold is reached. At this point we begin to simulate diffusion. A starting 
circle whose center is located within the central "window" is chosen ran- 
domly, its position recorded, and its center set as the local origin, where 
our random walker "ant" starts its random walk. The ant then selects a 
new circle (one of the intersecting circles) or remains on the same circle, in 
a process to be described subsequently. When the ant hops to the center of 
a selected circle (whether or not the ant has actually moved), a unit of time 
is recorded. The above process is repeated from the next circle and con- 
tinued until the clock reaches a preset value. After each time unit we record 
the distance of the ant from the local origin, R. This procedure, using a 
new starting circle chosen randomly, is repeated for a preset number  of 
ants. 
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The actual process of hopping from a given circle to a new circle 
follows the "blind ant ''(1) algorithm. Here, however, as pointed out above, 
we do not have an upper limit to the number of intersecting neighbors for a 
given circle, so we have to modify the above common algorithm. We have 
done that by using M, the maximum number of intersections per circle in 
the particular sample studied, as a normalizing constant. ~15) Thus, if a given 
circle has N intersecting neighbors, the ant will hop to each of these 
neighbors with probability 1/M and remain in place with probability 
1 - N / M .  

We note that despite the similarity of the diffusion process described 
by the present algorithm and the corresponding process on lattices, the 
respective results may differ due to the differences mentioned above. In 
addition, for our continuum algorithm, the ant remains in place much 
longer, on the average, than its lattice counterpart. This is because M is 
uncharacteristically high (in general, N ~ M), while the lattice coordination 
number is not uncharacteristically high (Zpc is of the order of z, where z is 
the lattice coodination number and Pc is the critical occupation 
probability). Thus, our continuum blind ant moves more slowly than the 
lattice blind ant, and perhaps should be nicknamed the "lazy blind ant." 
The other extreme, i.e., when the ant never chooses to stay on the same site 
(or circle), is known as the "myopic ant. ''(1) To check further the effect of 
the sitting time, we also used the myopic ant algorithm (hop probability 
I/N) in our continuum systems. 

In an attempt to approximate properly a random walk on an infinite 
network while having a finite sample, we require the following: all random 
walks must begin from one of the circles located within the central window 
and may not cross the boundary (we use no periodic boundary conditions, 
which are potentially biasing ~4) and are difficult to establish for the 
continuum). The boundary region at the edges has a width equal to a circle 
radius; a circle in this region could conceivably intersect with a circle out- 
side our sample, i.e., with a circle in the infinite network not represented in 
our finite sample. Therefore, when the ant enters the boundary region, the 
walk is stopped, and the time of "falling off the edge" (i.e., touching the 
boundary) is recorded. Any data for later times cannot be relied upon. By 
starting the walks only from the central window (which is an unbiased 
representative "cut" from the entire sample) we ensure that our walks are 
sufficiently long. Additionally, any ant beginning in an isolated circle (one 
that intersects no o thers ) jus t  stays at the same place the entire time. In 
such cases we save computer time by skipping the entire diffusion process 
for this walk. 

After the diffusion process is repeated for a preset number of ants, we 
build a new random sample and repeat the entire process. Finally we 
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average together the results, i.e., the square of the distances R 2 from the 
respective local origins, for all the ants and samples, to get the ( R  2) 
displacement as a function of time t. 

3. D I F F U S I O N  IN A C O N T I N U U M  N E T W O R K  W I T H  
V A R Y I N G  LOCAL C O N D U C T A N C E S  

Our algorithm for diffusion in a network of varying local conductances 
was implemented in the continuum by following the same general outline 
as the algorithm described in Section 2. For  this case, however, we 
attribute a given conductance to every pair of intersecting circles. Our 
previous algorithm can then be thought of as the specific case where all the 
conductances between intersecting circles are equal. 

As each circle is checked for intersection with previously placed circles, 
we select a value for the conductance between the intersecting circles and 
store it in a second matrix. Thus, in addition to the first matrix, which lists, 
in row i, the circles intersecting circle i, this parallel matrix gives, in row i, 
the corresponding conductance values. The necessity of computing and 
storing a second large matrix is one aspect of the greater computational 
difficulty of this second algorithm. 

The diffusion process itself is similar to that of the previous case, 
except for the "moody" movement of the ant. At each "tick" of the clock, 
instead of selecting a neighboring intersecting circle with probability 1/M, 
the blind ant selects a given circle with probability gfM, where gj 
(0 ~< gj ~< 1 ) is the conductance between the ant's circle and circle j. Hence, 
the ant will remain on the same circle with probability 1 - Z  g~/M, where 
the sum is over all intersecting (neighboring) circles. (In contrast, the 
myopic ant select a given j with probability gj/Z gm, and never remains on 
the same circle.) 

Our algorithm is, in a way, a generalization of previous "termite" 
algorithms, (12'131 which describe diffusion in media containing two com- 
ponents of nonequal conductivity. In particular, it is similar to the so-called 
"Boston Termite l. ''I13/ 

The other details of the diffusion process, statistics, and acquisition of 
data are as described in Section 2. 

In order to check the effect of bond strength variation, we have used 
the random distribution (6'7~ 

P(g) dg= (1-c~) g-~ dg (1) 

where 0 ~< g ~< 1 and c~ is a constant (~ < 1). This distribution is selected 
since it is well known to yield nonuniversal values for the transport 
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exponents(6 H~ and since it has been shown (5) to yield the corresponding 
nonuniversal anomalous diffusion exponents on lattices (see below). Hence, 
applying this distribution to the continuum geometry used in the present 
paper is expected to account for the diversity of the objects' environments 
(see Section 1) that can be found in real continuum systems. It is to be 
pointed out that particular physical situations may suggest other conduc- 
tance distributions which can be investigated using the present algorithm. 

If P(g)  does not diverge as g ~ 0, we expect a behavior similar (7) to 
the one discussed in Section 2. For the distribution of interest, which is 
given by Eq. (1), each conductance value is computed by looking at the 
cumulative distribution function(t6): 

I(g) = P(g')  dg '= g t -~  (2) 

where I is chosen randomly between 0 and 1, and g is then simply given by 

g =  I 1/~1 ~) (3) 

4. R E S U L T S  

We used the algorithms described in Sections 2 and 3 to simulate dif- 
fusion in the anomalous regime, i.e., when the system is at the percolation 
threshold and the region visited by the ant is self-similar (3 >> L, where ~ is 
the correlation length and L is the sample size). For each of the four cases 
to be considered, ten different configurations (samples) were used, and on 
each configuration 1000 ants were sent in the manner described above. 
From all these data the average (R 2) was determined as a function of 
time. Using two-dimensional (three-dimensional) systems, we set the fixed 
radius of each circle (sphere) at 0.006 (0.02). This choice yielded 
approximately 10,000 circles (spheres) at the percolation threshold (the 
exact value varied slightly with each configuration). Note that the sample 
size L is essentially the inverse of the above fixed radius. Hence, even 
though the number of objects is the same, the three-dimensional samples 
are about three times smaller than the two-dimensional samples. 

Our results, to be presented below, are given by log-log plots of (R 2) 
versus walking time t. Following the definition (1) of the anomalous 
diffusion exponent k 

(R 2) oct 2k (4) 

we obtained the value of 2k directly from the slope of the logqog plot. 
Then, using the scaling relation of anomalous diffusion (1) 

2k = (2v -//)/(2v -/~ +/z) (5) 
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we also determined the value of the conductivity exponent #. This was 
done by using the universal values m of the correlation length exponent v 
and the percolation cluster exponent/3: 

=~4/3 (2D) . f5/36 (2D) 
v [0.9 (3D)' P = t0.4 (3D) (6) 

Our approach appears to be justified (see Section 5), since it has already 
been shown (17 19) that the statistical and geometrical critical exponents 
obey lattice/continuum universality. 

Figure 2 shows the results for the two-dimensional case of random 
circles. To obtain the value of 2k, we have followed Havlin and 
Ben-Avraham, (3t who demonstrated that the correct value is obtained by 
taking the slope at asymptotically large t. This is consistent with the 
correction-to-scaling relation proposed by Pandey et  a/.(41: 

/~ = (R  2 )1/2 = t k (a  _ b / / )  (7) 

where a, b, and l are constants. Since the samples are finite, one cannot 
take as high a t as one wishes, due to the falling-off-the-edge effect 
described in Section 2 (the downturn for t > 104 in Fig. 2 is due to this 
effect). Correspondingly, we recorded the time of falling for each ant and 

1 

< R 2 >  

~0 -I 

10 -2 

2D 

Y 

10-3 , ,,,,,,,I , ,,,,,I , , ,,,,ul , ,,,,,, 

'10 10 2 10 3 10 4 lO 5 

t 

Fig. 2. The dependence of the average (R  25 (where R is the distance traveled by the 
diffusing ant), on the number of step attempts t in samples of the type described in Fig. 1. The 
systems are exactly at their percolation threshold. 
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did not consider the slope beyond this time. In the present case we took the 
slope in the time regime 103 < t < 10 4, obtaining 

2k = 0.66 _+ 0.03, # = 1.3 _ 0.2 

These values for k and # are consistent with results obtained from 
simulations of two-dimensional lattice diffusion. (4) Furthermore, the value 
obtained for # is consistent with those obtained using other Monte Carlo 
procedures, (1] such as the transfer matrix method for lattices (2~ and the 
matrix inversion method for the continuum. (21~ 

Figure 3 shows the <R 2 > versus t results for the two-dimensional case 
with a conductance value distribution. The conductors network is deter- 
mined by the bond configuration, which results from the intersections of 
the circles in a sample such as the one shown in Fig. 1. The local 
conductance values are chosen using the distribution given by Eq. (1) for 
~=0.8.  Following the considerations used in taking the < R  2> versus  t 
slope in Fig. 2, we determine the value of the slope in the present case in 
the time region 1 0 5 < t <  10 6. These relatively much larger times (in 
comparison with those in the single-value-conductance network, Fig. 2) are 
due to the many poor conductors in the present network; the diffusion 
process is slowed down, and the time of falling off the edge is prolonged 
considerably. Using the above procedure, we obtain for this case 

2k = 0.41 _+ 0.02, # = 3.6 _+ 0.3 

< R 2 >  

-1  10 

I0-2 

2D 

a= 0.8 

1 0 - 3  , , , , , , , , I  
,10 3 t 0  4 

i I r i l l f i  I I , , , , , , I  I I I 1 ' 1 "  

10 5 t0 6 10 7 

t 

Fig. 3. Same as Fig�9 2, except that the conductance distribution given by Eq. (1) has been 
introduced�9 
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This "nonuniversal" decrease of the anomalous diffusion exponent is 
consistent with the predicted increase of the conductivity exponent (6'8'9) for 
the distribution used if one assumes that the scaling relation (5) holds also 
for the present case. On the other hand, the value obtained for # by using 
this relation is somewhat lower than expected. This is borne out by the fact 
that the value of/~ is predicted to be within the interval (7) 

( d - 2 ) v  + 1/(1 - ce) ~</z ~ (#univ -- 1 )+  1/(1 --C~) (8) 

where d is the dimensionality of the system and ]/univ is the appropriate 
"universal" value. (I~ In two dimensions (where #univ = 1.3) this implies that 
for c~ = 0.8 one should find 5.0 ~< ~t ~< 5.3. Clearly, our value for bt is smaller 
than these values. We shall further discuss this deviation below. 

Figure 4 shows the results obtained for a system of spheres in the 
three-dimensional continuum. In three dimensions our samples are smaller 
(see Section 4) and the diffusivity is larger than in two dimensions, because 
the cluster backbone is less "blobby," leading to a more "efficient" diffusion 
process. The latter effect will be enhanced for the "lazy blind ant," since M 
in three dimensions is smaller than M in two dimensions. This result is 
simply due to the fact that in general there is a smaller critical number of 
bonds per site in the three-dimensional case. Hence, the time of falling-off- 
the-edge is much shorter here than for its two-dimensional counterpart. 
Correspondingly, to find 2k in the three-dimensional case, we had to take 
the slope in the region 102< t < 10 3. Following the above discussion, one 

Fig. 4. 

< R 2 >  

j.O -1 

3 D  

f 
~ . 0 - - 2  i i = i i r N I  t t L t l t t n  r i 1 1 1 ~ ,  i = e = : i l l  

1 t0 10 2 :10 3 t0 4 

t 

Plot of (R 2) versus t for a three-dimensional systems of spheres when the systems 
are at the percolation threshold. 
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expects the three-dimensional 2k values to be less accurate and farther 
removed from the "correct" asymptotic value than the two-dimensional 
values. Furthermore, Pandey et al. (4) predict that the correction term in 
Eq. (7) is larger in three dimensions than in two, which would require one 
to compute the three-dimensional slope at even higher t values than in the 
two-dimensional case. In view of this, it is apparent that in the three- 
dimensional case it is much more likely that we have to account for the 
finite times of the actual measurement. Therefore, we followed Ref. 4 in 
determining 2k by extrapolating to infinite time. For  this purpose, we 
determined the slope at various times. The corresponding value of the slope 
yields an "effective value" 2ke+ at a given time. Now, following Eq. (7), i.e., 
plotting the values of 2kerr as a function of t t, one expects to get the 
extrapolated value of 2k. If this correction term is proper, we should get a 
straight line [note that 

kerr = d(log/?)/d(log t) = k + ( lb /a ) t  - t ]  

so that the vertical axis intercept will yield the "correct" or "asymptotic" 
value of 2k. By following the conjecture ~4) that bit  t (the leading correction 
term) varies in three dimensions as 1//?, one expects that l ~ k .  Hence, we 
plotted 2ke+ (computed at various points from t = 10 to t =  1000) as a 
function of t - t  for various values of / .  This procedure was continued until 
the obtained value of k was consistent with the l ~ k condition. In our case 
this was found for /=0.20.  As shown in Fig. 5, the straight line 

0.7 

2kef f  
o 6 

o 5 

0 4 

o 

0 

0 

- 3 D  

3 

2 

f 

/ . . - -  j 

+1 , ,  , ,  I ,  , , , I  . . . .  I . . . .  I , ,  ~ I =  r = a  l ~ n ,  + 

0 . 0  0 .1  0 . 2  0 . 3  0 . 4  0 . 5  0 . 6  0 . 7  
t -0.2 

Fig. 5. Plot of 2ke~ as a function of time for the results plotted in Fig. 4. The t--* oo 
asymptotic  limit yields the "correct" value of 2k = 0.42 (see text). 
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approximation appears to be quite good for the l value chosen, yielding the 
extrapolated values 

2k = 0 .42_ 0.01, # =  1.9+0.1 

These results for three dimensions are again very close to previously repor- 
ted values for k (using a similar procedure (4)) and for/~ on lattices. (l'z2) 

In Fig. 6 we show our results for the <R 2> dependence on t as 
obtained on a three-dimensional system of spheres, where variable-value 
conductances are attached to intersecting spheres. As in the two-dimen- 
sional case, we used the above distribution [Eq. (1)] with ~=0.8.  Again, 
the slowing of the diffusion process causes the falling-off-the-edge effect to 
be delayed, and we got reliable results for up to t = 105. Using the correc- 
tion considered above, i.e., that b/t l oc 1//?, we repeated the same procedure 
for the determination of the asymptotic k value. This time the value l = 0.10 
yielded a value of k consistent with l ~  k. The results obtained by plotting 
2kerr as a function of t o.lo were 

2k = 0.22 + 0.02, /~ = 5.0 + 0.6 

The latter result is to be compared with the expectation from Eq. (8), when 
one considers the three-dimensional known values (l) of v=0 .9  and 
/~u,iv = 2.0. This consideration, for c~ = 0.8, implies that 5.9 ~ # ~< 6.0. Again, 
our result is close to, but slightly lower than, that suggested by Eq. (8). 

Using a procedure similar to that described for three dimensions, we 
can also extrapolate to infinite times in two dimensions. In this case, 
however, the relation b/ /oc  1//~ does not seem to hold. (4) One may follow 

Fig. 6. 
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< R 2 >  

1 0 - i  

3 D  

~= 0.8 

t 0 - 2  . . . . . . . .  I , , ,,,,I , , , , , , , , I  . . . . .  ,,, 

tO  2 lO  3 lO  4 ~0 5 lO  6 

t 

Same as Fig. 4, except that the conductance distribution given by Eq. (1) has been 
introduced. 
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then Ref. 4 in assuming that 12 ~ 2/3, where l 2 and l 3 refer to the respective 
correction-to-scaling exponents in two and three dimensions. Following 
this assumption for the analysis of our results for the two-dimensional 
system of random circles, we plotted 2ke~ versus t -~ and obtained 

2k = 0.64 + 0.01, # =  1.4+0.1 

The fact that these values are, within the error bars, the same as the 
uncorrected results given above (i.e., that the correction did not improve 
the results) shows that our two-dimensional system is a good (to the above 
accuracy) approximation of an infinite system. 

For the two-dimensional varying-conductance case with c~=0.8, we 
followed a similar procedure, and plotted 2ke~ versus both /-0.2o and /-o.25 

The two plots yielded essentially the same extrapolated values for 2k. The 
"corrected" results can be summarized then by 

2k = 0.35 + 0.02, # = 4.7 + 0.4 

While this corrected value for # is closer to the predictions of Eq. (8) than 
the (large-t) unextrapolated result given above, it is still slightly lower than 
expected. The improvement here, in comparison with the single-value-con- 
ductance case, is (as will be discussed in Section 5) a result of the larger 
deviation from "infinite sample" conditions in the present case. 

We also-simulated "myopic ant" (zero sitting time) anomalous 
diffusion (1'23) for the same four cases discussed above, and obtained similar 
results (within the range of error). This is consistent with previous results 
on lattices, which concluded that the myopic and the blind ant belong to 
the same universality class.  (23'24) Our results show, however, that this is 
also true for the varying-conductances case. This agreement is not 
automatically expected, since the myopic ant (which hops at every time 
step) effectively renormalizes the hopping probabilities at each step, thus 
moderating the effects of the "weak bonds" that play such a crucial role in 
the nonuniversal behavior.(7) 

5. D I S C U S S I O N  

The values obtained in Section4 for the anomalous diffusion 
exponents both in two dimensions (2k= 0.66_+0.03) and in three dimen- 
sions (2k=0.42_+0.01) show that diffusion in a continuum geometry 
belongs to the same universality class as diffusion on lattices. Furthermore, 
the fact that the corresponding # values ( # =  1.33 _+0.3 and # =  1.9_+0.1) 
are equal to those previously obtained by other methods on lattices and 
continuum systems indicates that the scaling relation (5) also holds in the 
continuum. 
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The results, following the application of a conductance distribution 
(which appears to be more natural in continuum systems; see Section 1), 
are also in accord with the above conclusion in the sense that the non- 
universality is also the same for lattice and continuum systems. It is not 
affected by the number-of-neighbors distribution, but is affected by the 
bond strength distribution. This is borne out by the fact that if one con- 
siders diffusion on a lattice geometry, as was done by Bunde e t  al., (5) or if 
one considers a continuum geometry, as was done in the present work, one 
obtains the same results. 

We noted in Section 4 that assuming the existence of the scaling 
relation (5) for the case of a conductance distribution with a nonuniversal 
# has yielded, in both the two-dimensional and three-dimensional com- 
putations, conductivity exponents slightly lower than the lower bounds 
predicted by Eq. (8). In view of the data obtained on lattices, this deviation 
appears to be quite general. For  example, for c~ = 3/4, Bunde et  al., ~5) by 
applying the scaling relation (5), obtained # = 3.9 in 2D, while for e = 5/7, 
Murat et  al., f11) using another approach (the transfer matrix algorithm), 
obtained # = 4.1 in 3D. These values fall below the lower bounds predicted 
by Eq. (8) ( # = 4 . 0  and #=4 .4 ,  respectively). In fact, the three previous 
simulations (5'1~ which a varying-conductance network was considered 
reveal the following trend: for small values of ~, /~ is quite close to the 
original theoretical prediction of Kogut and Straley, (6) 

/~Ks = (#univ - 1 ) +  1/(1 - - ~ )  (9) 

but as ~ is increased, the "experimental" /~ does not increase as 
dramatically as ~Ks. The generality of the above discrepancy and trend 
indicate a finite-size effect; as e increases, the sample becomes effectively 
too small to simulate properly the specific distribution, and hence a much 
larger sample is needed to equivalently approximate (say, for our ~ = 0.8 
case) an infinite sample. In other words, if one stays with the same sample 
size (number of objects) but increases c~, one reduces the statistical quality 
of the sample. The effect of the finite size is well known to reduce the con- 
ductivity exponent, since the critical resistivity divergence becomes weaker. 

An interesting observation is that the critical behavior of anomalous 
diffusion is not affected by the time interval during which the ant stays at a 
given site or object. Hence the myopic ant, the blind ant, and our "lazy 
blind ant" all show the same universal behavior. Essentially this obser- 
vation was made before for lattices by the comparison of the first two 
cases. (23) The extension to the third case considered here is not obvious, 
because the sitting time here, while relatively large, is weakly controlled by 
the local environment. Furthermore, in the case of a conductance dis- 
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tribution, the effective reduction of the hop probability may appear to be 
stronger in the case of the "lazy blind ant" (where a singly connected bond 
has a hop probability gfM) in comparison with that of the myopic ant 
(hop probability gj). We may conclude, then, that it is the connectivity of 
the system that determines the critical behavior of the diffusion process. 
Differences in the sitting times do not affect the universality. On the other 
hand, differences in the hopping times to different neighbors (different bond 
strengths) yield the "conventional" nonuniversal behavior. 
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